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D y n a m i c s 1  Polysystems and Optimization 

1. Introduction. The purpose of t h i s  paper is  t o  describe the elements of 

a new general formalism which seems t o  hold promise as a device f o r  the 

analysis  of dynamical systems w i t h  a l ternat ive inputs, much as the now 

wel les tab l i shed  subject of topological dynamics ( [ 8 ] ;  [ll], chap. V )  

can be regarded as, and was original ly  intended t o  be ( [ 3 ] ,  chap. V I I )  

a device f o r  the analysis of autonomous dynamical systems. 

I n  t h i s  paper, Sections 2 and 3 present the  basic def ini t ions and a 

f e w  fundamental facts; beginning i n  Section 4, a t t en t ion  i s  concentrated 

on optimization problems and the closely related question of the  structure 

of the boundary of the so-called reachable sets. 

culminates i n  the "generalized Jacobi condition" and i ts  corollary, which 

appear i n  the last  section. 

This l ine  of inquiry' 

The present paper touches on only a f e w  of the poten t ia l ly  in te res t -  

ing and useful aspects of the theory of dynamical polysystems; questions 

of s t a b i l i t y  and "controllabil i ty",  fo r  example, are not raised a t  a l l ,  and 

m u s t  w a i t  f o r  discussion elsewhere. 
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2. Bs i c  Definitions. Throughout w h a t  follows, T denotes the real 

l i ne  with i ts  standard topology. A quadruple (E, @, T, T )  will be 

cal led a dynamical polysystem (or, f o r  short ,  a system) if E and @ 

are  topological spaces, 7r : @ x E x T + E  and T : E + T  are continuous 

mps,and Axioms I-IV below are sat isf ied.  

i s  an abbreviation f o r  ~ ( c p ,  e, t), where cp E @, e E E, and t E T. 

Each cp, so regarded as a map from E x T t o  E, is  continuous. 

* 

H e r e  and subsequently q(e, t)  

I. For a l l  cp E @ and e E E, q(e, 0) = e. 

II. For a l l  cp E @, e E E, and tl, t2 E T, 

111. For a l l  cp E @, e E E, and t E T, T[cp(e,t)] = T ( e )  + t. 

E @ and to E T, there  exists a unique cp E @, 1' q2 IV. For a l l  cp 

denoted by cpl/tdcp2, such that i f  T ( e )  = to, then 

cp(e, t )  = ql(e, t )  i f  t S 0 and = cp2(e, t )  if t 2 0. 

This def in i t ion  requires some comwnt. F i r s t ,  note that because of 

the continuity of 7r and because of Axioms I and 11, f o r  each f ixed cp 

the mpping ~ ( q ,  , ) : E x T + E  i s  a dynamical system ([ll], Chap. V )  

o r  flow (['j]) on E; hence the term "polysystem". However, Axiom I11 

along with the  assumed continuity of 

systems from being very in te res t ing  (see proposition 3 and the comments 

that follow it). 

T prevents these separate dynamical 

*- ~ 

fore  be taken t o  be discrete .  
Throughout this paper the  topology of @ plays no role,  and may there- 
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The primary intended interpretat ion is  as follows. T i s  a time 

scale. E is  the "event space" for  some "plant*'. The typ ica l  element 

of E, o r  event, i s  a state-withassociated-time; the t i m e  associated 

with an event e i s  T(e). (3 is  the s e t  of "inputs" (or  ' 'controlsn) 

cp, each of which yields a cer ta in  terminal event cp(e, t )  f o r  any given 

i n i t i a l  event e 

t. The roles  of the first two axioms, which a re  common, should be clear.  

Axiom III establ ishes  a consistency between the  two uses of the variable 

t, i n  t iming events and measuring duration. Axiom IV, which gives a 

dynamical polysystem its coherence, a s s e r t s  i n  e f f ec t  that f o r  any inputs 

cpl and cp, and any instant  there ex i s t s  an input cp which a c t s  

l i k e  'pl before to and l ike  cp afterward. 

and a time-interval of appl icat ion of any given length 

2 

The uniqueness requirement i n h i o m  N m y  seem severe a t  first,  

since cp = 'pl/td'p2 appears t o  be constrained only on the s e t  St x T, 

where St = {e E E : T(e) = t 1; but i n  f a c t  Axiom IV leaves cp no 

freedom whatever. 

t a n t  case. 

0 

0 
0 

The following proposition shows this i n  the most impor- 

Proof. Let  el = cp(e, t - T(e)).  By Axiom 11, 
0 

Since T(e) + t - t 2 0 by assumption and T(e ) = t by Axiom 111, it 

follows tha t  

0 1 0 



By a similar argument, 

Elimination of el from the  last two equations gives the required formula. 

Another by-product of Axiom IV i s  that it expresses the f a c t  that a 

dynamical polysystem is  nonanticipatory ([lo], p. 6) In the following sense: 

if  the system sh i f t s  from input cp, t o  input cp, a t  time to, this has 

no e f f ec t  on events and t h e i r  transformations that occur before the time 

I n  other words, phenomena i n  the subspace {e E E : T ( e )  5 to} with 

the input cpl/to/'p2 do not depend on 9,. T h i s  may be ver i f ied  by the 

methods used t o  prove Proposition 1. 

Two dynamical polysystems (EiJ Qi, vi, Ti)  (1 = 1,2) are isomorphic 

if there  ex is t  homeomorphism q : El <-> E2, r : Q 1 <-----> Q 2' 

s : T <-> T, where s i s  order-pEserving, such that  

f o r  a l l  'p, E Q1, el e El, and t E T; and 

Th i s  re la t ion  is reflexive,  symmetric, and t r ans i t i ve ,  as one readi ly  

ver i f ies .  
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A system is  said t o  be a state-time system if' E = X x T, where 

X is some topological "s ta te"  space, and T i s  the projection of E 

onto T. 

s i tuat ion.  

-- 

As mentioned above, t h i s  may be regarded as the archetypal 

Proposition 2. For every d y n a m i c a l  polysystem there ex i s t s  an 

isomorphic state-time system. 

Proof. et (E1, Ql, rl, 7 ) be the given system, and l e t  1 - 
So = (e E El : T ( e )  = 0 ) .  Put E2 = So x T and Q2 = Ql, and take r and 

s t o  be the respective iden t i ty  maps. Define q : E <-> E 

q(e) = (cpo(e, - T(e)) ,  T(e)) ,  where cp i s  any fixed element of 

Then q has an inverse 

defined by 

2 by 1 

@l* 0 
.u 

q given by ;(eo, t )  = To(eo, t). If r2 is 

and 7 is  taken t o  be the projection of E2 onto T, then (E2, Q2, r2, r2) 

i s  a state-time system isomorphic t o  (E1, rl, T,), where the necessary 

homeomorphisms may be taken t o  be the maps q, r, s j u s t  described. The 

2 

ver i f i ca t ion  of the details i s  omitted. 

Proposition 2 shows that the decision t o  work with "events" e i n  

general, instead of the  apparently less general state-time pairs (x, t), 

i s  not essent ia l ;  it is  not even a bow toward r e l a t i v i t y  theory, but only 

rndtter of - - L - L  IIU ~,a t,icjmi convenience. 
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Proposition 3. If (E, @, T, 7 )  i s  a dynamical polysystem, each 

of the associated dynamical systems (flows) c p ( -  , 0 )  : E x T + E  is 

parallelizable.  

- Proof. According t o  [ 5 ] ,  f o r  example, t h i s  means that f o r  any 

cp E @ there ex i s t s  a set S ( E and a homeomorphism h from E onto 

S x T such that q ( S ,  T) = E and h(cp(e, t ) )  = (e, t )  f o r  every 

e E S, 

by taking S t o  be So, choosing cpo t o  be the  given ‘p, and then 

letting h be the corresponding mp q. 

t E T. I n  terms of the preceding proof, this may be accomplished 

Thus the individual dynamical systems c p ( - ,  0 )  can display none 

of the mxr rence  properties with which topological dynamics i s  usually 

concerned; it is only collectively,  especially as in te r re la ted  by Axiom IV, 

that they become qual i ta t ive ly  interest ing.  

the set If t E T, St = {e E E : T(e) = t)  m y  be cal led the 

t s e c t i o n  of E. 

Proposition 4. In  every dyllamical polysystem, any two t-sections are 

homeomorphic, and every t l s e c t i o n  is  closed i n  E. 

F’roof. If tl and t2 are given, then f o r  any fixed (p, cp( , t2-tl) 

onto st j i ts  inverse is  c p ( - ,  tl - t2). 
2 

i s  a homeomorphism from 

Here again the d e t a i l s  may be omitted. A t -sect ion St i s  closed because 

T is  continuous and st = T-’(t). 

. Henceforth everything w i l l  r e f e r  t o  

some fixed but otherwise unspecified dynamical polysystem 

e E E and t E T, the  s e t  F(e, t> ( E defined by 

(E, @, T, 7)- If 



-7- 

w i l l  be called the at ta inable  se t  form e a t  t. The (positively) 

reachable set  from e is  the se t  R ( e )  defined by 

+ 
R ( e )  = T(@, e, T ) = (cp(e, t) : cp E @ and t 1 0). 

(Here 

analogously defined negatively and b i l a t e r a l l y  reachable s e t s  i n  w h a t  

follows, the adverb "positively" w i l l  not be used. 

T+ = (t E T : t 4 O}.) Since there will be no occasion t o  use the 

Axiomatic theories based on close counterparts of F and R have 

been developed by a number of writers, including Brbaz in  ( fl]), Zubov 

([161, Chap. 4), and R a i n  ([141). 

assumptions that by no means follow from the  conditions s ta ted in Section 2. 

For example, F(e, t )  is often assumed t o  be closed o r  even comgact. On 

t h e  other hand, some of the propositions s ta ted  below have no general 

analogues i n  the theories  cited.  

It i s  usual i n  these theories t o  make 

+ 
Clearly, R(e) = U(F(e, t )  : t E T }. A somewhat less super f ic ia l  

observation i s  : 

Proposition 5. If el E: R(e), then R(el)  c R(e). 

+ 
Proof. Ut  e2 E R(el). Then there exists a 'p, E @ and a t2 E T - + 

such that e2 = cp2(el, t2). Likewise, there e x i s t  a cp, A E @ and a t, I E T 

such that el = cpl(e, tl). L e t  cp = cpl/(T(e) + tl)/(p2. Then since 

T ( e )  s T ( e )  + tl 5 T(e) + tl + t2, 
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it follows from Proposition 1 tht 

whence e2 E R ( e ) .  

Proposition 6. For every e E E and every t E T, F(e, t )  i s  

pathwise connected. 

- Proof. The proof w i l l  be described f o r  the case t E: T'; there  i s  

a n  analogous proof f o r  the  complementary case. Let  (el, e2] ( F(e, t), 

where t 2 0. Then there exist cp,, 'p2 E 0 such that 

ql(e, t) = ei (i = 1, 2). 

Define p : [0, t l  + E  by 

The continuity of p follows from that of 'pl and cp,. From Axiom I 

it follows t h a t  p(0) = el and p ( t )  = e2. Finally,  p([O, t ] )  ( F(e, t )  

because f o r  any t '  E [0, t ] ,  
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It i s  easy t o  show, without using Axiom IT, that R ( e )  i s  path- 

wise connected f o r  every e. 

The following theorem, apparently f irst  s ta ted  ( i n  a narrower 

context) by Roxin ([131, Theorem 3.1) i s  a strongly reminiscent of a 

theorem about d i f f e ren t i a l  equations with nonunique solutions published 

by H u k u h a r a  i n  1930 ( [6 1). I therefore ca l l  it the  

Hukuhara-Roxin Theorem. If cp(e, t) E a R ( e ) ,  then 

q(e, [O,  t]) ( dR(e). ( H e r e  & denotes the boundary of X i n  the sense 

of general topology: a~ = X n E - x.) - 

- Proof. Let cp(e, t )  E dR(e). Note f irst  that t 2 0; f o r  i n  the 

contrary case, (e '  E E : T ( e ' ) <  .(e)] would be a neighborhood of 

q(e,  t )  d i s jo in t  from R ( e ) .  Suppose tha t  the conclusion of the theorem 

i s  fa l se .  Then there exists a t '  E [O, t)  such that e '  = cp(e, t ') 

belongs t o  the i n t e r i o r  of R ( e ) .  By the continuity of cp i n  e, there 

e x i s t s  a neighborhood N of el = q(e, t )  such tha t  

Let e2 E N. Then 

e3 = q(e2, t '  - t) E R ( e ) .  

Thus there  exists a E Q, such tha t  f o r  some tl 2 0, 

e3 = V(e, tl). 
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Note tha t  by Axiom 111, 

'p, = +/T(e3)/'p. Since 

T(e3) = T(e2) + t' - t = T(e) + tl. Let 

.(e) + [T(e2) - T ( e )  1 = T(e3) + (t - t') 2 .(e,) 

while 

it follows from Proposition 1 that 

Hence, since T ( e 2 )  - .(e) = tl + (t - t ') 2 0, 

N( R(e). This contradicts the assumption that el E &(e) .  

e2 E R(e). Thus 

4. v. Within recent years rapidly r i s ing  i n t e r e s t  

has attached t o  problems of optimal control, where the typ ica l  objective 

i s  t o  choose an input (from a given set of a l t e rna t ives )  f o r  a p lan t  s o  

that the output satisfies ce r t a in  side conditions while some numerical 

"performance index" i s  m i m i z e d  o r  minimized. 

subject through 1961, see [TI.)  

(For the  l i t e r a t u r e  on t h i s  

O p t i m a l  control  problems from a ra ther  wide 

c lass  can be formulated i n  t he  context of dynamical polysystems - indeed, 

this i s  the xaison d 'gtre  f o r  the l a t t e r  - and the pr inc ipa l  goals of the 

remainder of this gaper a re  t o  show how t h i s  can be done and t o  present some 

fundamental f ac t s  about the resu l t ing  s i tua t ion .  



One type of optimal control  problem goes as follows. A dynamical 

polysystem, representing some plant, i s  given. An i n i t i a l  event eo 

and a desired terminal event el[T(el) > T(eo) 1 are presgribed. Assume 

t h a t  

Le . ,  that el E R ( e o ) .  There i s  given a Eal-valued function L on E 

(normally continuous ami non-negative) . Then 

defines a real functional on V. The problem is  t o  f ind  a cp (if it 

exists)  that minimizes C relative t o  Y. The form of the problem can 

be simplified by embedding the given system i n  a larger one. 

E '  = E x R, where R i s  the real l ine,  and define TT : E * x 0 x T +E* 

and 7' : E* + T  by 

L e t  

Then i f  L is  well enough behaved t o  assure the required continuity of 

TT', (E', 0, TT', 7') is  a dynamical polysystem, and the or ig ina l  problem 

is equivalent t o :  ret e '  r (eo, C) aid Gl = {e,] x R, and define 

J : E '  + R  by J(e, r) = r; f ind  a cp E @ and a t c: T+ such that 

0 * 

* I n  this par t icu lar  problem, t m u s t  be ?-(e ) - T ( e  ), so there  i s  r ea l ly  
no problem of finding it, but this  formulation is used !?or the sake of ready 
gene rali zab i l i t y  . 



'p(eA, t )  E G1 and J a t t a i n s  a m i n i m u m  a t  'p(eA, t) re la t ive  t o  

Since many important types of optimal control  problems can be re- 

duced t o  the saw form by such devices (cf.  [E], Chap. I), a def in i t ion  

based on t h i s  form should be useful. 

f o r  the  s y s t e m  (E, a, T, 7 )  (eo, G1, J), 

where e E E, G1 is  a nonempty subset of E, and J i s  a real-valued 
+ function on G1. A solution of such a problem is  a p a i r  

Accordingly, an  optimization problem 

is here defined t o  be a t r i p l e  

0 

(F, z) E x T 

such that G(eo, c) E G1 and 

f o r  a l l  el E. G1 n R(eo) .  

A desirable further generalization would be t o  replace eo by a non- 

of E and t o  define an optimization problem and i ts  
GO 

empty subset 

solutions accordingly. 

with slight modifications, t o  this more general type of problem. 

The m t e r i a l  i n  sections 6-8 b e l o w  i s  applicable, 

The following theorem is one form of a pr inciple  apparently f irst  

s ta ted  by Bellman ( for  example, see [2], p. 83). 

The Principle of Optimality. If (G, g)  is  a solut ion of the optimiza- 
- 

t i o n  problem (eo, G1, J), and e; = cp(eo, t), w h e r e  0 6 t 5 g, then 

(v, 7 - t) i s  a solut ion of the optimization problem (e:, G1, J). 

A proof by contradiction i s  e a s i l y  carr ied out with the a i d  of 

Proposition 1. 
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5. -. The optimization problem (eo, G1, J) w i l l  be 

said t o  be degenerate if J attains a loca l  m i n i m u m  relative t o  G1 a t  

some point of G1. (The meaning of the term here i s  similar to ,  but not 

qui te  the saw as tbt given by Rozonoer i n  [l51) It seems that most prac- 

t i c a l  problems ( f o r  example, those obtained from an  in tegra l  functional as 

i n  Section 4) are nondegenemte, but the "Spl i t t ing Theorem'' below makes 

possible the reduction, i n  a cer ta in  sense, of many optimization problems 

t o  nondegenerate problems. 

topological character w i l l  be needed. 

Several preliminary letnrm,s of an elementary 

Let J be a fixed real-valued function on a topological space X. 

The symbol p(X) w i l l  denote the s e t  of points of X a t  which J 

a t t a i n s  a loca l  minimum on X. 

Lemma 1. If J is continuous, it is constant on any connected sub- 

s e t  of p(x) .  

There i s  a straightforward proof by contradiction. 

Lemrra 2. Sf J i s  continuous and X is  locally arcwise connected, 

P(X - dx)) = 8- 

- Proof. Suppose tha t  xo E p(X - p(X)).  A f o r t i o r i ,  xo E X - p(X). 

There thus ex i s t s  a neighborhood N of xo such that f o r  a l l  x E N - p(X), 

J(x) 5 J(x0). It may be assumed tha t  N is arcwise connected. NOW l e t  

x E N p(X). There exists an  a r c  P joining xo and 5 i n  N. 

Suppose J ( x ~ )  < J ( x ~ ) .  since p(x) n P( p(p), x2 E p ( ~ ) .  AJ 1 

J is constant on the component of x2 i n  p(P), which is a cer ta in  

2 



-14- 

half-open o r  closed subarc x x of P. Hence J(xl) = J(x2) C J(xo), 

s o  x1 # xo. Then there are poinst  x*  of P - p(P) such that 

J(x') < J ( x ~ ) .  However, P - V ( P ) (  P - p(x)  C N - p(x) ,  SO X'  E N - p(x) 

1 2  

while J(x') < J(xo), a d  t h i s  contradicts the choice of N. Hence 

J ( X 2 )  2 J(xo); that is, J(x) S J ( X o )  f o r  a l l  x E N n p(X). But then 

J(X) 2 J ( X o )  fo r  a l l  x E N = ( N  n p(X) )  U (E - p ( X ) ) ,  S O  x E p(X). 

Th i s  again i s  a contradiction, and the le- is proved. 
0 

Examples can be produced t o  show that if the assumption of l oca l  

arcwise connectedness i s  dropped from Lemma & the statement i s  not 

generally true. 

Spl i t t ing  Theorem. If G1 i s  loca l ly  arcwise connected and J i s  

CoITtinuous, then any solution of the optimization problem (eo, G1, J) i s  

a solut ion of one or  the other of the problems 
* 

P1 = (eo, GI - p(G1), J) 

and p2 = (eo, P(G& 

blem P2 i s  discrete  

the "target" p( G1), 

J). The problem P1 is  nondegenerate, a d  the pro- 

i n  the  sense t h a t  J is constant on components of 

so t o  f ind  a solut ion of P2 it is suf f ic ien t  t o  

seek out the  component K ( i f  it exists) of p(G1) that in te rsec ts  

R ( e o )  f o r  which the associated value of J is least, and then f ind  any 
+ 

(cp,  t)  E 0 x T such t h a t  cp(eo, t )  E K. 

Lemmas 1 and 2 give everything needed f o r  the proof of this theorem 

that does not follow from the def in i t ion  of a solut ion and very simple 

considerations. 

The spli t t ing theorem, together with the previous observation about 

the  frequency of occurrence of nondegenerate problems, makes the appearance 

of nondegeneracy assumptions i n  subsequent theorems qui te  unobjectionable. 

* 
If p(G1) i s  $ o r  G1, one o r  the other  of the problem P1 and P2 

evaporates and the s t a t e w n t  is  t r ivial .  
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6. a. The following necessary 

condition f o r  optimality was formulated and proved by Halk i r?  ( [ 9 ] )  i n  

a more r e s t r i c t ed  context. He called it 

The principle of Optimal Evolution. If (6, E )  i s  a solut ion of 

a nondegenerate optimization problem (eo, G1, J), then 

- Proof- Cbnsider el = :(eo, E). If el f aR(eo) ,  R(eo)  is  a neigh- 

borhood of el, s o  by the assumed nondegeneracy there  exists an 

e l  E G1 fl R(eo) such that J(ei)  < J(e,). T h i s  contradicts the assumption 

that (6, F) is a solut ion of (eo, G1, J). Thus el E &(eo). The rest 

follows from the Hukuhara-Raxin Theorem. 

This pr inciple  locates the  center of interest, as far as nondegenerate 

optimization problems are concerned, i n  the boundary of R(eo) .  The 

remainder of the paper i s  therefore concerned wlth the s t ructure  of t h i s  se t .  

7. -. 
Proposition 7. For every t 2 0, &(e, t) ( aR(e), where 

&(e, t)  denotes the boundary of F(e, t )  relative t o  the t -sect ion i n  

which it lies, namely ST(e) + t. 

The simple proof, which is  omitted, i s  based on the observation 

that  F(e, t)  = R(e) n s ~ ( ~ )  + t- 

Thus U (&(e, t )  : t h 0) ( &(e), where the two a t s  are t o  be 

in te rpre ted  appropriately. Equality does not hold i n  general, so  it is 
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impossible without fur ther  assumptions t o  draw the highly desirable con- 

clusion that if  (6, :) 

problem (eo, G1, J), 

is a solution of a nondegenerate optimization 

then G(eo, t )  E &(eo, t )  f o r  a l l  t E [0, TI. 

I n  order t o  get nearer t o  this conclusion, it will be assumed 

henceforth tha t  E is  a metric space ( w i t h  metric p),  an3 that the 

following special  continuity requirement i s  sa t i s f ied :  

there ex i s t  a neighborhood N of e and a posit ive real number 7 such 

f o r  every e E E 

that the mps c p ( - ,  0 )  (cp E @) are uniformly equicontinuous on 

N X [-7, 711. 

Propositions 8, 9, and 10 are i n  e f f e c t  lemmas. 

Proposition 8. For any el E. E and e > 0, there ex i s t s  a 6 > 0 

such t h a t  for a l l  cp E @ and a l l  e E E such that p(el, e )  < 6, 

- Proof. By the special  continuity assumption, there  exist  a neighbor- 

hood N of el, an 7 > 0, and a 61 > 0 such that  

It m y  be assumed that e i s  s o  small t h a t  

( 2 )  B(el' -2) N and k < 7; 

Eere B(e , c) denotes the open ball of center  el and radius E i n  E. 

Having se t t led  ( 2 ) ,  one may go on t o  assume that 

1 
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( 3  1 61< 4 .  

By the special  continuity again, there ex i s t s  9 E2 > 0 such that 

Since T is continuous a t  el, the= ex i s t s  a 6 > 0 such that 

Thus 6 bas the  required properties. I n  fac t ,  for any cp e Q, and any 

e E B(el, S ) ,  

T (e,) ), it follows from ( 5 )  that  

IT(.) - T(el)l < 62 by (7). Therefore i f  e2 = cp(el, .(e) - 



But q(e2, T(e l )  - T ( e ) )  = el; hence 

as was t o  be shown. 

Proposition 9. If el E i n t  F(e, t )  (t I O ) ,  where "int" denotes 

the in t e r io r  re la t ive  t o  the t-section ST(e)+t that contains F(e, t), 

then there  ex i s t s  a 6 > O  such that 

- Proof. Iet el E i n t  F(e, t). Then there  exigts an 6 > 0 such 

that 

kt 6 correspond t o  6 as i n  Proposition 8. Then i f  e2 E B(el, S ) ,  cp 

is  any fixed element of 

gives e3 E B(el, ). Since a l s o  T ( e 3 )  = T ( e l ) ,  e3 E F(e, t); 

say e3 = ql(e, t )  where q1 E. 6. Now l e t  'p2 = cpl/T(el)/q. If 

T ( e 2 )  2 .r(el) [ B T (e) I, 

0, a d  e3 = q(e2, T ( e l )  -. T ( e 2 ) ) ,  Proposition 8 

Proposition 1 gives 



Thus e2 E R(e), as needed. 

Proposition 10. If' 

e E  1 

proof. [The closure 

as that relative t o  E or 

- 

e E E and el E dR(e), then 

F(e, o(e,) - T(e)). 

t a 0). 

indicated i n  the proposition m y  be interpreted 

that relat ive t o  S, e +t, because this sub- 0 
space is closed (Proposition 4). ] Let  e E E and el e aR(e ) .  L e t  

t > 0, and choose 6 as i n  Proposition 8. For some (cp, t) E cp x T , 
e2 = q ( e ,  t) E B(el, 6). 

+ 

Now 

An event el w i l l  be said t o  be Con.iw a t e  t o  the event e i f  

e E dR(e) n i n t  F(e, s(el)  - T(e)) ,  where t 'int" again denotes the 1 

i n t e r i o r  r e l a t ive  t o  the  proper t-section, E ~ t e  that s1 can 'be con- 

jugate t o  e only if T(el) > 7 ( e ) .  
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Ebrample. Consider the state-time s y s t e m  i n  which X is the uni t  

c i r c l e  with the angle 8 (mod a) as coordinate variable, 0 is the 

set of a l l  functions cp : T [-I-, +11 t h a t  a r e  integrable on all 

f i n i t e  intervals ,  and 
* 

Then the event el = (T, T )  is conjugate t o  the event e = (0, 0) (see 

the f igure) .  

The refinement of Proposition 7 toward which the preceding discussion 

has been directed can now be stated and quickly proved. 

Boundary Decomposition Theorem. Let C ( e )  be the s e t  of events 

conjugate t o  e. Then aR(e) i s  the union of the  d i s jo in t  sets C(e) 

and U(aF(e, t )  : t 2 0), w h e ~  the symbol @(e, t )  is t o  be interpreted 

as i n  Proposition 7. 

- Proof. By Proposition 7, 

and by the  def in i t ion  of conjugate events, 

* 
S t r i c t l y  speaking, cp's t h a t  d i f f e r  on a set of measure zero should be 

ident i f ied .  
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A l s o  by the def ini t ion of conjugate events, 

NOW suppose that el E &(e) - c(e) .  

e E: F(e, T(e l )  - T(e)j ,  where t = T(e l )  - T ( e )  Z 0. However, since 

e l  B c ( 4 ,  e 1 f! i n t  F(e, t). Thus 

BY Proposition 10, 

1 

e E F m  - in% F(e, t )  = &(e, t). 1 

This gives 

which, with (10) and (ll), yields the desired conclusion. 

8. The Generalized Jacobi Condition. The principle  of o p t i m l  evolution 

(Section 6) of course gives a necessary condition f o r  o p t i m l i t y .  

cept of conjugate event makes it possible t o  foxmulate another necessary 

condition which, because of i t s  formal resemblance t o  the c l a s s i c a l  Jacobi 

necessary condition of the  calculus of var ia t ions  ( fo r  example, see [4], 

p. 881, 1 c a l l  

The con- 

The Genemlized Jacobi Condition. If (G, 5 )  is a solut ion of the  

nondegenerate optimization problem (e o, G1, J), 

t o  eo i n  the s e t  $(e [o, €)). 
0’ 

there are no events conjugate 

Proof. Suppose that (F,  T) is  a so lu t ion  such that, f o r  some 
- 

t [O, f ) ,  el = q(eo, t )  is conjugate t o  e. Then 

tr 



e E int F(e, r(el) - r ( e ) )  = i n t  F(e, t), 1 

whence, by Proposition 9, the= ex is t s  a 6 > 0 such that 

this is possible by the continuity of cp. Now let  4 > 0 be such that 

this can be done because e2 belongs t o  the set  on the r ight ,  which is 

open. BY (12) and (131, 

since e E cp(e, [0, t]), this contradicts t he  principle of optimal evo- 

l u t  ion. 

2 

The following statement now follows from the  principle of opt iml  

evolution, the  boundary decomposition theorem, and the result ju s t  proved. 

Coromry.  ~f (Cp, T,) is any solut ion of the nondegenerate optimizn-- 

t i o n  problem (eo, G1, J), then q(eo, t) E &(eo, t) f o r  all t E [O, z). 
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This  proposition is parallel t o  the pr inciple  of o p t i m l  evolution, 

but has t he  advantage that the necessary condition f o r  optimality that 

it embodies refers only t o  the s i t ua t ion  of the  moment: 

of F(e, t), 

t o  apply the c r i te r ion  a t  

given a knowledge 

one has t o  look neither forward nor backward i n  time i n  order 

t. 
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